Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Biomol Struct Dyn ; : 1-10, 2022 Feb 26.
Article in English | MEDLINE | ID: covidwho-2297641

ABSTRACT

The outbreak of SARS-CoV-2 infections around the world has prompted scientists to explore different approaches to develop therapeutics against COVID-19. This study focused on investigating the mechanism of inhibition of clioquinol (CLQ) and its derivatives (7-bromo-5-chloro-8-hydroxyquinoline (CLBQ), 5, 7-Dichloro-8-hydroxyquinoline (CLCQ)) against the viral glycoprotein, and human angiotensin-converting enzyme-2 (hACE-2) involved in SARS-CoV-2 entry. The drugs were docked at the exopeptidase site of hACE-2 and receptor binding domain (RBD) sites of SARS-CoV-2 Sgp to calculate the binding affinity of the drugs. To understand and establish the inhibitory characteristics of the drugs, molecular dynamic (MD) simulation of the best fit docking complex performed. Evaluation of the binding energies of the drugs to hACE-2 after 100 ns MD simulations revealed CLQ to have the highest binding energy value of -40.4 kcal/mol close to MLN-7640 (-45.4 kcal/mol), and higher than the exhibited values for its derivatives: CLBQ (-34.5 kcal/mol) and CLCQ (-24.8 kcal/mol). This suggests that CLQ and CLBQ bind more strongly at the exopeptidase site than CLCQ. Nevertheless, the evaluation of binding affinity of the drugs to SARS-CoV-2 Sgp showed the drugs are weakly bound at the RBD site, with CLBQ, CLCQ, CLQ exhibiting relatively low energy values of -16.8 kcal/mol, -16.34 kcal/mol, -12.5 kcal/mol, respectively compared to the reference drug, Bisoxatin (BSX), with a value of -25.8 kcal/mol. The structural analysis further suggests decrease in systems stability and explain the mechanism of inhibition of clioquinol against SARS-CoV-2 as reported in previous in vitro study.Communicated by Ramaswamy H. Sarma.

2.
J Mol Graph Model ; 114: 108201, 2022 07.
Article in English | MEDLINE | ID: covidwho-1799823

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects the host cells through interaction of its spike protein with human angiotensin-converting enzyme 2 (hACE-2). High binding affinity between the viral spike protein and host cells hACE-2 receptor has been reported to enhance the viral infection. Thus, the disruption of this molecular interaction will lead to reduction in viral infectivity. This study, therefore, aimed to analyze the inhibitory potentials of two mucolytic drugs; Ambroxol hydrochlorides (AMB) and Bromhexine hydrochlorides (BHH), to serve as potent blockers of these molecular interactions and alters the binding affinity/efficiency between the proteins employing computational techniques. The study examined the effects of binding of each drug at the receptor binding domain (RBD) of the spike protein and the exopeptidase site of hACE-2 on the binding affinity (ΔGbind) and molecular interactions between the two proteins. Binding affinity revealed that the binding of the two drugs at the RBD-ACE-2 site does not alter the binding affinity and molecular interaction between the proteins. However, the binding of AMB (-56.931 kcal/mol) and BHH (-46.354 kcal/mol) at the exopeptidase site of hACE-2, significantly reduced the binding affinities between the proteins compared to the unbound, ACE-2-RBD complex (-64.856 kcal/mol). The result further showed the two compounds have good affinity at the hACE-2 site, inferring they might be potent inhibitors of hACE-2. Residue interaction networks analysis further revealed the binding of the two drugs at the exopeptidase site of hACE-2 reduced the number of interacting amino residues, subsequently leading to loss of interactions between the two proteins, with BHH showing better reduction in the molecular interaction and binding affinity than AMB. The result of the structural analyses additionally, revealed that the binding of the drugs considerably influences the dynamic of the complexes when compared to the unbound complex. The findings from this study suggest the binding of the two drugs at the exopeptidase site reduces the binding effectiveness of the proteins than their binding at the RBD site, and consequently might inhibit viral attachment and entry.


Subject(s)
Ambroxol , Bromhexine , COVID-19 Drug Treatment , Angiotensin-Converting Enzyme 2 , Angiotensins/metabolism , Humans , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
3.
Heliyon ; 7(3): e06426, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1126835

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiological agent for coronavirus disease 2019 (COVID-19), has resulted in an ongoing pandemic. Presently, there are no clinically approved drugs for COVID-19. Hence, there is an urgent need to accelerate the development of effective antivirals. Herein, we discovered Clioquinol (5-chloro-7-iodo-8-quinolinol (CLQ)), a Food and Drug Administration (FDA) approved drug, and two of its analogues (7-bromo-5-chloro-8-hydroxyquinoline (CLBQ14); and 5, 7-Dichloro-8-hydroxyquinoline (CLCQ)) as potent inhibitors of SARS-CoV-2 infection-induced cytopathic effect in vitro. In addition, all three compounds showed potent anti-exopeptidase activity against recombinant human angiotensin-converting enzyme 2 (rhACE2) and inhibited the binding of rhACE2 with SARS-CoV-2 Spike (RBD) protein. CLQ displayed the highest potency in the low micromolar range, with its antiviral activity showing a strong correlation with inhibition of rhACE2 and rhACE2-RBD interaction. Altogether, our findings provide a new mode of action and molecular target for CLQ and validates this pharmacophore as a promising lead series for the clinical development of potential therapeutics for COVID-19.

4.
bioRxiv ; 2020 Sep 14.
Article in English | MEDLINE | ID: covidwho-807012

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), enters the host cells through two main pathways, both involving key interactions between viral envelope-anchored spike glycoprotein of the novel coronavirus and the host receptor, angiotensin-converting enzyme 2 (ACE2). To date, SARS-CoV-2 has infected up to 26 million people worldwide; yet, there is no clinically approved drug or vaccine available. Therefore, a rapid and coordinated effort to re-purpose clinically approved drugs that prevent or disrupt these critical entry pathways of SARS-CoV-2 spike glycoprotein interaction with human ACE2, could potentially accelerate the identification and clinical advancement of prophylactic and/or treatment options against COVID-19, thus providing possible countermeasures against viral entry, pathogenesis and survival. Herein, we discovered that Ambroxol hydrochloride (AMB), and its progenitor, Bromhexine hydrochloride (BHH), both clinically approved drugs are potent effective modulators of the key interaction between the receptor binding domain (RBD) of SARS-CoV-2 spike protein and human ACE2. We also found that both compounds inhibited SARS-CoV-2 infection-induced cytopathic effect at micromolar concentrations. Therefore, in addition to the known TMPRSS2 activity of BHH; we report for the first time that the BHH and AMB pharmacophore has the capacity to target and modulate yet another key protein-protein interaction essential for the two known SARS-CoV-2 entry pathways into host cells. Altogether, the potent efficacy, excellent safety and pharmacologic profile of both drugs along with their affordability and availability, makes them promising candidates for drug repurposing as possible prophylactic and/or treatment options against SARS-CoV-2 infection.

5.
Int J MCH AIDS ; 9(3): 350-353, 2020.
Article in English | MEDLINE | ID: covidwho-729808

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent for coronavirus disease 2019 (COVID-19), and its ensuing mitigation measures have negatively affected the Maternal and Child Health (MCH) population. There is currently no surveillance system established to enhance our understanding of SARS-CoV-2 transmission to guide policy decision making to protect the MCH population in this pandemic. Based on reports of community and household spread of this novel infection, we present an approach to a robust family-centered surveillance system for the MCH population. The surveillance system encapsulates data at the individual and community levels to inform stakeholders, policy makers, health officials and the general public about SARS-CoV-2 transmission dynamics within the MCH population.

SELECTION OF CITATIONS
SEARCH DETAIL